Decomposition of Organic Carbon in Fine Soil Particles Is Likely More Sensitive to Warming than in Coarse Particles: An Incubation Study with Temperate Grassland and Forest Soils in Northern China
نویسندگان
چکیده
It is widely recognized that global warming promotes soil organic carbon (SOC) decomposition, and soils thus emit more CO2 into the atmosphere because of the warming; however, the response of SOC decomposition to this warming in different soil textures is unclear. This lack of knowledge limits our projection of SOC turnover and CO2 emission from soils after future warming. To investigate the CO2 emission from soils with different textures, we conducted a 107-day incubation experiment. The soils were sampled from temperate forest and grassland in northern China. The incubation was conducted over three short-term cycles of changing temperature from 5°C to 30°C, with an interval of 5°C. Our results indicated that CO2 emissions from sand (>50 µm), silt (2-50 µm), and clay (<2 µm) particles increased exponentially with increasing temperature. The sand fractions emitted more CO2 (CO2-C per unit fraction-C) than the silt and clay fractions in both forest and grassland soils. The temperature sensitivity of the CO2 emission from soil particles, which is expressed as Q10, decreased in the order clay>silt>sand. Our study also found that nitrogen availability in the soil facilitated the temperature dependence of SOC decomposition. A further analysis of the incubation data indicated a power-law decrease of Q10 with increasing temperature. Our results suggested that the decomposition of organic carbon in fine-textured soils that are rich in clay or silt could be more sensitive to warming than those in coarse sandy soils and that SOC might be more vulnerable in boreal and temperate regions than in subtropical and tropical regions under future warming.
منابع مشابه
Correction: Decomposition of Organic Carbon in Fine Soil Particles Is Likely More Sensitive to Warming than in Coarse Particles: An Incubation Study with Temperate Grassland and Forest Soils in Northern China
متن کامل
Association of Soil Aggregation with the Distribution and Quality of Organic Carbon in Soil along an Elevation Gradient on Wuyi Mountain in China
Forest soils play a critical role in the sequestration of atmospheric CO2 and subsequent attenuation of global warming. The nature and properties of organic matter in soils have an influence on the sequestration of carbon. In this study, soils were collected from representative forestlands, including a subtropical evergreen broad-leaved forest (EBF), a coniferous forest (CF), a subalpine dwarf ...
متن کاملRegional variation in the temperature sensitivity of soil organic matter decomposition in China's forests and grasslands.
How to assess the temperature sensitivity (Q10 ) of soil organic matter (SOM) decomposition and its regional variation with high accuracy is one of the largest uncertainties in determining the intensity and direction of the global carbon (C) cycle in response to climate change. In this study, we collected a series of soils from 22 forest sites and 30 grassland sites across China to explore regi...
متن کاملتأثیر افزودن ذرات لاستیک فرسوده بر برخی ویژگیهای شیمیایی یک خاک آهکی
Waste tire rubbers are considered one of the environment pollutants. Increased production of these pollutants has led to more serious consideration of ways to reduce the harms caused by their accumulation in the environment. Therefore, the effects of incorporation of waste rubber crushed particles in two sizes of 1-2 and 3-5 mm and the amounts of 0, 5, 10 and 20 Mg ha-1 in a calcareous soil (0-...
متن کاملCarbon storage capacity of semi-arid grassland soils and sequestration potentials in northern China.
Organic carbon (OC) sequestration in degraded semi-arid environments by improved soil management is assumed to contribute substantially to climate change mitigation. However, information about the soil organic carbon (SOC) sequestration potential in steppe soils and their current saturation status remains unknown. In this study, we estimated the OC storage capacity of semi-arid grassland soils ...
متن کامل